Dewatering Equipment Overview: Application, Operations, Maintenance

Ron Drake
Regional Manager MUE
Alfa Laval, Inc.
Biosolids Processing Technology

- Thickening
- Dewatering
Points of Emphasis

• Available Dewatering Technologies
• Process Generating the Biosolids
• Technology Selection
 – How The Machine Operates
 – Maintenance Requirements
 – Capital Cost
 – Energy Requirements
Types of Mechanical Technology

- Batch Process-Filter Press
- Continuous Process
 - Low Speed Technology
 - Belt Press, Gravity Belt Thickener, Rotary Drum Thickener, Screw Press, Volute Press
 - High Speed Technology
 - Centrifuge
Biosolids Thickening

Low Speed Technology
Biosolids Thickening: *Low Speed*

Gravity Belt Thickener
- Straight forward operation
- Enclosed process available
- Some GBTs require no civil prep
- Low energy (~2-5 hp)
- Low Maintenance
- Range: 120 gpm to 900 gpm

Rotary Drum Thickener
- Straight forward operation
- Enclosed process, no mist
- Simple installation
- Low energy (~2 hp)
- Maintenance varies
- Range: 60 gpm to 750 gpm
Gravity Belt Thickener

ABE.mp4
Gravity Belt Thickener

Operations

• Manual process optimization

• Tuning Parameters:
 – Belt Speed
 – Hydraulic Loading (gpm)
 – Solids loading (lbs./hr.)
 – Polymer dosage
 – Mixing/Polymer injection point/polymer concentration

Maintenance

• Manual or automatic bearing lube available

• Bearings lubrication every 6 months

• Continuous, self cleaning belt

• Belt replacement 2000-4000 hours

• Wear items, seals, grid, doctor blades
Rotary Drum Thickener

G3 RDT movie_cfg1_h264.mp4
Rotary Drum Thickener

Operations

• Manual process optimization
• Tuning Parameters:
 – Drum Speed
 – Hydraulic Loading (gpm)
 – Solids loading (lbs./hr.)
 – Polymer dosage
 – Mixing/Polymer injection point/polymer concentration

Maintenance

• Trunion and chain drive
• Pillow block with direct drive
 – Gear box fluid every 6 months
• Spray shower
• Wedge wire repair
• Wear items, trunions, chain drive components
Biosolids Thickening

High Speed Technology
Decanter Thickening: High Speed

- High throughput per footprint
- Advanced, autonomous controls
- Enclosed process = better atmosphere
- Relatively compact solution
- Polymer used to tune recovery rate
- Range from 25 gpm to 1000 gpm
Decanter Centrifuge Thickening

Decanter inside~6116768.mpeg
Decanter Centrifuge Thickener

Operations
- Manual or full automation for process optimization
- Tuning Parameters:
 - Bowl Speed
 - Pond depth
 - Torque/Load
 - Hydraulic Loading (gpm)
 - Solids loading (lbs./hr.)
 - Polymer dosage
 - Mixing/Polymer injection point/polymer concentration

Maintenance
- Manual back drive bearing lube ~300 hours
- Manual or automatic main drive bearing lubrication
- Gear box fluid every 6 months
- Clean in Place-as needed
- Wear saddles as needed
Technology Comparison: Thickening

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Gravity Belt Thickener</th>
<th>Rotary Drum Thickener</th>
<th>Thickening Centrifuge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash water</td>
<td>⚅</td>
<td>⚅</td>
<td>⚅</td>
</tr>
<tr>
<td>Noise</td>
<td>⚅</td>
<td>⚅</td>
<td>⚅</td>
</tr>
<tr>
<td>Polymer use</td>
<td>⚅</td>
<td>⚅</td>
<td>⚅</td>
</tr>
<tr>
<td>Foot print</td>
<td>⚅</td>
<td>⚅</td>
<td>⚅</td>
</tr>
<tr>
<td>Power</td>
<td>⚅</td>
<td>⚅</td>
<td>⚅</td>
</tr>
<tr>
<td>Cake dryness</td>
<td>⚅</td>
<td>⚅</td>
<td>⚅</td>
</tr>
</tbody>
</table>
Biosolids Dewatering

Pressure Filtration

Centrifugation
Belt Filter Press

- Robust, long service life
- Low maintenance
- Variety of configurations
- Low energy use (~10 hp)
- Wide range of operation
Belt Filter Press

BFP_preview_200814.mp4
Belt Filter Press

Operations

• Manual process optimization
• Tuning Parameters:
 – Belt Speed
 – Hydraulic Loading (gpm)
 – Solids loading (lbs./hr.)
 – Polymer dosage
 – Mixing/Polymer injection point/polymer concentration
 – Belt tension (50 pli max.)

Maintenance

• Manual or automatic bearing lube available
• Bearings lubrication every 6 months
• Gear box fluid 1000 hours
• Hydraulic fluid 1000 hours
• Continuous, self cleaning belt
• Belt replacement 2000 to 4000 hours.
• Wear items, seals, grid, doctor blades
Biosolids Dewatering

Screw Press
Screw Press

Low Power, Supervision and Maintenance Requirements

• User-friendly design
• Quiet!
• Requires minimal operator attention
• Simple concept – high uptime
• Low rotational speed means
 – Low power demand, reducing operational costs (~2 hp)
 – Sealed process; low to no odor
Screw Press

Operations

• Manual process optimization
• Tuning Parameters
 – Hydraulic loading
 – Solids loading
 – Mixing
 – Polymer dosage
 – Discharge pressure

Maintenance

• Manual or automatic bearing lube available
• Bearings lubrication per manufacturers schedule
• Gear box fluid 1000 hours
• Wear items, flight brushes or tips
Biosolids Dewatering

Filter Press

(Plate and Frame)
Filter Press

PP_movie_cfg1.mp4
Filter Press

Batch Technology for Cake Solids to 40%+

- Ideal for dry cake solids, up to 40%
- Solids capture over 99%
- Easily customized for most dewatering needs
- Operating costs low due to low energy demand, low disposal cost
- Configured for manual, semi-auto and automatic operations.
Filter Press

Operations
- Manual Cake Discharge
- Tuning Parameters
 - Hydraulic loading
 - Solids loading
 - Mixing
 - Polymer dosage
 - Discharge pressure

Maintenance
- Feed Pumps
- Cloth Wash Down
- Bombay Doors
- Replace Cloths
- Replace Frames
Biosolids Dewatering

Decanter Centrifuge
Decanter Centrifuge Dewatering
Decanter Centrifuge Dewatering

- Advanced, autonomous controls
- Enclosed process, no mist
- Relatively compact solution
- Higher performance, higher energy
- PM is relatively low
Technology Comparison: Dewatering

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Centrifuge</th>
<th>Belt press</th>
<th>Chamber press</th>
<th>Screw press</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymer use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot print</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cake dryness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary and Take-Aways

• Several dewatering technologies to choose from
• Technology selection is based on the design demands, O&M needs, capital cost and operating budget
• Sludge makes all the difference!
Questions or Comments?

Thank You!